Extensions 1→N→G→Q→1 with N=C22 and Q=S3×Dic5

Direct product G=N×Q with N=C22 and Q=S3×Dic5
dρLabelID
C22×S3×Dic5240C2^2xS3xDic5480,1115

Semidirect products G=N:Q with N=C22 and Q=S3×Dic5
extensionφ:Q→Aut NdρLabelID
C22⋊(S3×Dic5) = Dic5×S4φ: S3×Dic5/Dic5S3 ⊆ Aut C22606-C2^2:(S3xDic5)480,976
C222(S3×Dic5) = Dic5×C3⋊D4φ: S3×Dic5/C3×Dic5C2 ⊆ Aut C22240C2^2:2(S3xDic5)480,627
C223(S3×Dic5) = Dic1517D4φ: S3×Dic5/Dic15C2 ⊆ Aut C22240C2^2:3(S3xDic5)480,636
C224(S3×Dic5) = S3×C23.D5φ: S3×Dic5/S3×C10C2 ⊆ Aut C22120C2^2:4(S3xDic5)480,630

Non-split extensions G=N.Q with N=C22 and Q=S3×Dic5
extensionφ:Q→Aut NdρLabelID
C22.1(S3×Dic5) = D12.2Dic5φ: S3×Dic5/C3×Dic5C2 ⊆ Aut C222404C2^2.1(S3xDic5)480,362
C22.2(S3×Dic5) = D12.Dic5φ: S3×Dic5/Dic15C2 ⊆ Aut C222404C2^2.2(S3xDic5)480,364
C22.3(S3×Dic5) = C20.5D12φ: S3×Dic5/S3×C10C2 ⊆ Aut C221204C2^2.3(S3xDic5)480,35
C22.4(S3×Dic5) = C60.54D4φ: S3×Dic5/S3×C10C2 ⊆ Aut C222404C2^2.4(S3xDic5)480,38
C22.5(S3×Dic5) = C158(C23⋊C4)φ: S3×Dic5/S3×C10C2 ⊆ Aut C221204C2^2.5(S3xDic5)480,72
C22.6(S3×Dic5) = S3×C4.Dic5φ: S3×Dic5/S3×C10C2 ⊆ Aut C221204C2^2.6(S3xDic5)480,363
C22.7(S3×Dic5) = C23.26(S3×D5)φ: S3×Dic5/S3×C10C2 ⊆ Aut C22240C2^2.7(S3xDic5)480,605
C22.8(S3×Dic5) = Dic3×C52C8central extension (φ=1)480C2^2.8(S3xDic5)480,26
C22.9(S3×Dic5) = C30.22C42central extension (φ=1)480C2^2.9(S3xDic5)480,29
C22.10(S3×Dic5) = C60.94D4central extension (φ=1)240C2^2.10(S3xDic5)480,32
C22.11(S3×Dic5) = C60.15Q8central extension (φ=1)480C2^2.11(S3xDic5)480,60
C22.12(S3×Dic5) = C30.24C42central extension (φ=1)480C2^2.12(S3xDic5)480,70
C22.13(S3×Dic5) = C2×S3×C52C8central extension (φ=1)240C2^2.13(S3xDic5)480,361
C22.14(S3×Dic5) = C2×D6.Dic5central extension (φ=1)240C2^2.14(S3xDic5)480,370
C22.15(S3×Dic5) = C2×Dic3×Dic5central extension (φ=1)480C2^2.15(S3xDic5)480,603
C22.16(S3×Dic5) = C2×D6⋊Dic5central extension (φ=1)240C2^2.16(S3xDic5)480,614
C22.17(S3×Dic5) = C2×C6.Dic10central extension (φ=1)480C2^2.17(S3xDic5)480,621

׿
×
𝔽